
Finding Bugs 
the Rube-Goldberg Way

Ruxcon 2014

mark.brand@datacom.com.au/c01db33f@gmail.com



Me

Work

- Datacom TSS
- pentesting/code auditing/research

Play

- Same as last year :-P
- When I have time, it’s nice to try 

and break things.



Outline[0]

Recap

- Last year
- Concolic execution for dummies

Requirements

- What do we need to attack harder 
problems.

- What do we need to do to find *real* 
bugs?



Outline[1]

Debugger-integrated goodness

Targetting

- What makes a good target for this 
technique?

- What legwork do we need to do?

Demos



Recap[0]

[*] [0 0x8049128] Wrote 0xb00ff002L recv_0292 return_address

[*] [0 0x8049128] Wrote 0xb00ff003L recv_0293 return_address

[*] Got full control of instruction pointer

[*] Looks like we got control from a return

[*] Writing shellcode at esp

[*] Pivoting via 0x28134827

[*] Built a small zoo on this binary!

[*] Launching exploit against 192.168.91.163:7482

[*] Press any key to throw

antipasto@c01db33f-freebsd-91-x86$ id

uid=1004(antipasto) gid=1004(antipasto) groups=1004(antipasto)

antipasto@c01db33f-freebsd-91-x86$



Recap[1] - Last year

Basically a fun toy

- Horrific parallelism (fork())
- Static analysis to generate IL

Plus, it was PoC quality code…



Recap[2] - Concolic

So, concolic execution… 

- Your fuzzer is concrete
- Symbolic is impractical
- Concolic is a bit better; you have a 

get-out-of-jail-free card if things 
get too hard.



Recap[3] - REIL

Arithmetic Instructions

ADD, SUB, MUL, DIV, MOD, BSH
Bitwise Instructions

AND, OR, XOR
Data Transfer Instructions

LDM, STM, STR
Conditional Instructions

BISZ, JCC
Other Instructions

NOP, UNDEF, UNKN



Requirements[0]

Speed

- Ditching python for C++ was not a 
good answer to this problem

Windows support

- Any platform on a supported CPU with 
a gdbstub?



Requirements[1]

Nice-to-have

- Dynamic REIL translation
- Cluster-able
- File-format aware



Targeting[0]

What are we better than a human at?

- Integer boundaries
- Complex pointer arithmetic

What are we hopeless at?

- Massively complex state-spaces
- Heavy use of string functions 



Targeting[1]

What do we want to look at?

- Binary protocols/file formats
- Post-crypto or plaintext… 

- Audio formats?
- Image formats?
- Fonts?



Approach

Started off writing proper, complete 
ELF and PE loaders. 

Modern ELF is surprisingly 
undocumented.

Let the system ELF loader handle it… 
Use LD_BIND_NOW and a debugger.



But

If we’re doing stuff dynamically… 

We can’t rely on static lifting of 
native code to REIL using IDA and 
BinNavi.

That approach always had some issues 
anyway; so…



XREIL

Extra Comparison Instructions

BISNZ, EQU
Better Shift Instructions

LSHL, LSHR, ASHR
Sign Extension

SEX
System Calls

SYS
Still under debate

SDIV



VDB - Visigoth’s Debugger

All python, supports BSD, linux, OSX, Windows 
and all sorts of embedded systems I hope to 
never see.

Two extension commands:

save_state - dump process state for analysis 
start-point.

save_trace - dump a trace for testing/validation



Ogg Vorbis

Why? I use it.

Ogg is the container format used to frame the 
Vorbis codestream.

Naively trying to run the tools on a fully 
symbolic file goes nowhere - Ogg format is 
*very* simple. We want to mess with the metadata 
and the Vorbis codestream



Hybrid Concolic Fuzzing?

Idea - parse the input files, mark the parts 
that we think are interesting as symbolic, leave 
the boring stuff as concrete.

I was going to do this properly, but time 
limitations...



Input file… 



Output file… 



Any Questions?
mark.brand@datacom.com.au

c01db33f@gmail.com 

Grab the code… 
https://github.com/c01db33f

 

mailto:mark.brand@datacom.com.au
mailto:mark.brand@datacom.com.au
mailto:c01db33f@gmail.com
mailto:c01db33f@gmail.com
https://github.com/c01db33f
https://github.com/c01db33f

